Last updated: 2021-10-15

Checks: 7 0

Knit directory: Test/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210926) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e8f889a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/Stabiliseur/
    Ignored:    data/json/
    Ignored:    data/plan/
    Ignored:    fig/
    Ignored:    workflowr.R

Untracked files:
    Untracked:  analysis/2021-10-12b.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/2021-10-14-0000-2200.Rmd) and HTML (docs/2021-10-14-0000-2200.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e8f889a cfcforever 2021-10-15 add new analysis

load data.json

today = "2021-10-14"
cat("data on:", today, "\n")
data on: 2021-10-14 
json_data = fromJSON(file = paste0("data/json/", today, "/position.json"))
dat <- data.frame(tag = unlist(lapply(json_data, function(x){x["tag_id"][[1]]})),
                  x = unlist(lapply(json_data, function(x){x["x"][[1]]})),
                  y = unlist(lapply(json_data, function(x){x["y"][[1]]})),
                  record_timestamp = unlist(lapply(json_data, function(x){x["record_timestamp"][[1]]})))
dat = dat[which(dat$record_timestamp>=1634162400 & dat$record_timestamp<1634241600),]
cat("Total collected positions: ", nrow(dat), "\n")
Total collected positions:  2244003 
dat = dat[order(dat$record_timestamp),]
dat = cbind.data.frame(dat, convert_date(dat$record_timestamp))
dat$x = as.numeric(dat$x)/100
dat$y = as.numeric(dat$y)/100

tagId = unique(dat$tag)

names_tag <- read.table(file = "data/tag_names_20210924.txt", header = T, sep = "\t")
names_tag = names_tag[names_tag$id%in%tagId, ]

tagId = names_tag$id
nb_tag = length(tagId)

dat = dat[dat$tag%in%tagId,]
dat$label = factor(dat$tag, levels = names_tag$id, labels = names_tag$label)
dat$tagn = as.numeric(factor(dat$tag, levels = names_tag$id, labels = 1:nb_tag))

list_tag <- split(dat, dat$tag)

quality of collecting data

table_tag <- data.frame(tag = names_tag$id, label = names_tag$label)
table_tag$first_record = NA
table_tag$last_record = NA
table_tag$number = NA
table_tag$number_NA = NA
table_tag$ratio_non_NA = NA
# table_tag$freq_1Q = NA
# table_tag$freq_median = NA
# table_tag$freq_3Q = NA


for (k in 1:nb_tag){
  tag = table_tag$tag[k]
  temp = list_tag[tag][[1]]
  temp$diff_ts = c(0, temp$record_timestamp[-1]-temp$record_timestamp[-nrow(temp)])
  
  table_tag$first_record[k] = head(as.character(temp$date),1)
  table_tag$last_record[k] = tail(as.character(temp$date),1)
  table_tag$number[k] = nrow(temp)
  table_tag$number_NA[k] = sum(is.na(temp$x))
  table_tag$ratio_non_NA[k] = round(1-table_tag$number_NA[k]/table_tag$number[k],2)
  # table_tag$freq_1Q[k] = round(quantile(temp$diff_ts, 0.25), 3)
  # table_tag$freq_median[k] = round(quantile(temp$diff_ts, 0.5), 3)
  # table_tag$freq_3Q[k] = round(quantile(temp$diff_ts, 0.75), 3)
}

kable(table_tag) %>%
  kable_styling(bootstrap_options = "striped", full_width = T)
tag label first_record last_record number number_NA ratio_non_NA
0da6 BRA1 2021-10-14 00:00:00 2021-10-14 21:59:59 394842 23231 0.94
2f7b BRA2 2021-10-14 10:15:13 2021-10-14 21:59:59 210992 2180 0.99
2f40 BRA4 2021-10-14 00:00:00 2021-10-14 21:59:59 395879 351 1.00
2f77 BRP1 2021-10-14 00:00:00 2021-10-14 21:59:59 390160 9390 0.98
2b9c BRP2 2021-10-14 00:00:00 2021-10-14 21:59:59 390979 2939 0.99
2e8d DYN3 2021-10-14 00:44:44 2021-10-14 21:33:29 49032 945 0.98
0baf ELC 2021-10-14 00:00:00 2021-10-14 00:54:44 16424 144 0.99
19ab FIX 2021-10-14 00:00:00 2021-10-14 21:59:59 395695 3455 0.99
list_tag = lapply(list_tag, function(x){cbind(x, data.frame(diff_ts = c(0, x$record_timestamp[-1]-x$record_timestamp[-nrow(x)])))})

nq = 10
table_diff_ts = matrix(NA, nrow = nb_tag, ncol = nq+1)
colnames(table_diff_ts) = paste0(c(0:10)/10*100, "%")
rownames(table_diff_ts) = tagId
for (k in 1:nb_tag){
  tag = tagId[k]
  table_diff_ts[k,] = round(quantile(list_tag[tag][[1]]$diff_ts[-1], c(0:10)/10), 3)
}
table_diff_ts = cbind.data.frame(label = names_tag$label, table_diff_ts)

kable(table_diff_ts) %>%
  kable_styling(bootstrap_options = "striped", full_width = T)
label 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0da6 BRA1 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 55.901
2f7b BRA2 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 14.799
2f40 BRA4 0.157 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 17.501
2f77 BRP1 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 906.702
2b9c BRP2 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 454.301
2e8d DYN3 0.144 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 22372.547
0baf ELC 0.142 0.158 0.199 0.2 0.2 0.2 0.2 0.2 0.201 0.242 0.258
19ab FIX 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 19.500

plot

plan <- read_excel("data/plan/Wall_lignes_firminy.xlsx")
plan = as.data.frame(plan)
plan$`Start X` <- as.numeric(plan$`Start X`)/100
plan$`Start Y` <- as.numeric(plan$`Start Y`)/100
plan$`End X` <- as.numeric(plan$`End X`)/100
plan$`End Y` <- as.numeric(plan$`End Y`)/100
colnames(plan) = c("Name", "Length", "Linetype Scale", "Angle", "Delta X",
                   "Delta Y", "Delta Z", "EndX", "EndY", "EndZ", 
                   "StartX", "StartY", "StartZ")
p <- ggplot(plan) + theme_bw() + 
  geom_segment(aes(x=StartX, y=StartY, xend=EndX, yend=EndY))
for (k in 1:nb_tag){
  tag = names_tag$id[k]
  label = names_tag$label[k]
  cat("\n")
  cat("### ", label, "\n")
  dd = list_tag[tag][[1]]
  if (!is.null(dd)){
    q <- p + 
      geom_point(data = dd, aes(x=x,y=y), col="red", size = 1) +
      coord_equal(ratio = 1, xlim = c(-35,5), ylim = c(-60,5)) + 
      labs(x = "", y = "", title = paste0(tag, " - ", names_tag$Matériel[names_tag$id==tag]))
    print(q)
  }else{
    cat("NO DATA for plot!!")
  }
  cat("\n")
}

BRA1

Warning: Removed 23231 rows containing missing values (geom_point).

BRA2

Warning: Removed 2180 rows containing missing values (geom_point).

BRA4

Warning: Removed 351 rows containing missing values (geom_point).

BRP1

Warning: Removed 9390 rows containing missing values (geom_point).

BRP2

Warning: Removed 2939 rows containing missing values (geom_point).

DYN3

Warning: Removed 945 rows containing missing values (geom_point).

ELC

Warning: Removed 144 rows containing missing values (geom_point).

FIX

Warning: Removed 3455 rows containing missing values (geom_point).

data from serveur

rm(list = ls())
source("code/fun_convert_date.R")

today = "2021-10-14"
cat("data on:", today, "\n")
data on: 2021-10-14 
json_data = fromJSON(file = paste0("data/json/", today, "/20211014.json"))
dat <- data.frame(tag = unlist(lapply(json_data, function(x){x["tag_id"][[1]]})),
                  x = rep(NA, length(json_data)),
                  y = rep(NA, length(json_data)),
                  record_timestamp = as.numeric(unlist(lapply(json_data, function(x){x["record_timestamp"][[1]]}))))
dat$x[unlist(lapply(json_data, function(x){length(unlist(x))==9}))] = unlist(lapply(json_data, function(x){x["x"][[1]]}))
dat$y[unlist(lapply(json_data, function(x){length(unlist(x))==9}))] = unlist(lapply(json_data, function(x){x["y"][[1]]}))

dat = dat[which(dat$record_timestamp>=1634162400 & dat$record_timestamp<1634241600),]
cat("Total collected positions: ", nrow(dat), "\n")
Total collected positions:  2244003 
range(dat$record_timestamp)
[1] 1634162400 1634241600
dat = dat[order(dat$record_timestamp),]
dat = cbind.data.frame(dat, convert_date(dat$record_timestamp))
dat$x = as.numeric(dat$x)/100
dat$y = as.numeric(dat$y)/100

tagId = unique(dat$tag)

names_tag <- read.table(file = "data/tag_names_20210924.txt", header = T, sep = "\t")
names_tag = names_tag[names_tag$id%in%tagId, ]

tagId = names_tag$id
nb_tag = length(tagId)

dat = dat[dat$tag%in%tagId,]
dat$label = factor(dat$tag, levels = names_tag$id, labels = names_tag$label)
dat$tagn = as.numeric(factor(dat$tag, levels = names_tag$id, labels = 1:nb_tag))

list_tag <- split(dat, dat$tag)

quality of collecting data

table_tag <- data.frame(tag = names_tag$id, label = names_tag$label)
table_tag$first_record = NA
table_tag$last_record = NA
table_tag$number = NA
table_tag$number_NA = NA
table_tag$ratio_non_NA = NA
# table_tag$freq_1Q = NA
# table_tag$freq_median = NA
# table_tag$freq_3Q = NA


for (k in 1:nb_tag){
  tag = table_tag$tag[k]
  temp = list_tag[tag][[1]]
  temp$diff_ts = c(0, temp$record_timestamp[-1]-temp$record_timestamp[-nrow(temp)])
  
  table_tag$first_record[k] = head(as.character(temp$date),1)
  table_tag$last_record[k] = tail(as.character(temp$date),1)
  table_tag$number[k] = nrow(temp)
  table_tag$number_NA[k] = sum(is.na(temp$x))
  table_tag$ratio_non_NA[k] = round(1-table_tag$number_NA[k]/table_tag$number[k],2)
  # table_tag$freq_1Q[k] = round(quantile(temp$diff_ts, 0.25), 3)
  # table_tag$freq_median[k] = round(quantile(temp$diff_ts, 0.5), 3)
  # table_tag$freq_3Q[k] = round(quantile(temp$diff_ts, 0.75), 3)
}

kable(table_tag) %>%
  kable_styling(bootstrap_options = "striped", full_width = T)
tag label first_record last_record number number_NA ratio_non_NA
0da6 BRA1 2021-10-14 00:00:00 2021-10-14 21:59:59 394842 23231 0.94
2f7b BRA2 2021-10-14 10:15:13 2021-10-14 21:59:59 210992 2180 0.99
2f40 BRA4 2021-10-14 00:00:00 2021-10-14 21:59:59 395879 351 1.00
2f77 BRP1 2021-10-14 00:00:00 2021-10-14 21:59:59 390160 9390 0.98
2b9c BRP2 2021-10-14 00:00:00 2021-10-14 21:59:59 390979 2939 0.99
2e8d DYN3 2021-10-14 00:44:44 2021-10-14 21:33:29 49032 945 0.98
0baf ELC 2021-10-14 00:00:00 2021-10-14 00:54:44 16424 144 0.99
19ab FIX 2021-10-14 00:00:00 2021-10-14 21:59:59 395695 3455 0.99
list_tag = lapply(list_tag, function(x){cbind(x, data.frame(diff_ts = c(0, x$record_timestamp[-1]-x$record_timestamp[-nrow(x)])))})

nq = 10
table_diff_ts = matrix(NA, nrow = nb_tag, ncol = nq+1)
colnames(table_diff_ts) = paste0(c(0:10)/10*100, "%")
rownames(table_diff_ts) = tagId
for (k in 1:nb_tag){
  tag = tagId[k]
  table_diff_ts[k,] = round(quantile(list_tag[tag][[1]]$diff_ts[-1], c(0:10)/10), 3)
}
table_diff_ts = cbind.data.frame(label = names_tag$label, table_diff_ts)

kable(table_diff_ts) %>%
  kable_styling(bootstrap_options = "striped", full_width = T)
label 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0da6 BRA1 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 55.901
2f7b BRA2 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 14.800
2f40 BRA4 0.157 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 17.501
2f77 BRP1 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 906.702
2b9c BRP2 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 454.302
2e8d DYN3 0.144 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 22372.548
0baf ELC 0.136 0.158 0.199 0.2 0.2 0.2 0.2 0.2 0.201 0.242 0.264
19ab FIX 0.000 0.199 0.200 0.2 0.2 0.2 0.2 0.2 0.200 0.201 19.500

plot

plan <- read_excel("data/plan/Wall_lignes_firminy.xlsx")
plan = as.data.frame(plan)
plan$`Start X` <- as.numeric(plan$`Start X`)/100
plan$`Start Y` <- as.numeric(plan$`Start Y`)/100
plan$`End X` <- as.numeric(plan$`End X`)/100
plan$`End Y` <- as.numeric(plan$`End Y`)/100
colnames(plan) = c("Name", "Length", "Linetype Scale", "Angle", "Delta X",
                   "Delta Y", "Delta Z", "EndX", "EndY", "EndZ", 
                   "StartX", "StartY", "StartZ")
p <- ggplot(plan) + theme_bw() + 
  geom_segment(aes(x=StartX, y=StartY, xend=EndX, yend=EndY))
for (k in 1:nb_tag){
  tag = names_tag$id[k]
  label = names_tag$label[k]
  cat("\n")
  cat("### ", label, "\n")
  dd = list_tag[tag][[1]]
  if (!is.null(dd)){
    q <- p + 
      geom_point(data = dd, aes(x=x,y=y), col="red", size = 1) +
      coord_equal(ratio = 1, xlim = c(-35,5), ylim = c(-60,5)) + 
      labs(x = "", y = "", title = paste0(tag, " - ", names_tag$Matériel[names_tag$id==tag]))
    print(q)
  }else{
    cat("NO DATA for plot!!")
  }
  cat("\n")
}

BRA1

Warning: Removed 23231 rows containing missing values (geom_point).

BRA2

Warning: Removed 2180 rows containing missing values (geom_point).

BRA4

Warning: Removed 351 rows containing missing values (geom_point).

BRP1

Warning: Removed 9390 rows containing missing values (geom_point).

BRP2

Warning: Removed 2939 rows containing missing values (geom_point).

DYN3

Warning: Removed 945 rows containing missing values (geom_point).

ELC

Warning: Removed 144 rows containing missing values (geom_point).

FIX

Warning: Removed 3455 rows containing missing values (geom_point).


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scales_1.1.1     DT_0.17          readxl_1.3.1     lubridate_1.7.10
 [5] dplyr_1.0.6      nnet_7.3-14      kableExtra_1.1.0 rjson_0.2.20    
 [9] cowplot_1.1.0    gifski_0.8.6     gganimate_1.0.7  ggplot2_3.3.3   
[13] workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] progress_1.2.2    tidyselect_1.1.0  xfun_0.25         purrr_0.3.4      
 [5] colorspace_1.4-1  vctrs_0.3.8       generics_0.1.0    viridisLite_0.3.0
 [9] htmltools_0.5.0   yaml_2.2.1        utf8_1.1.4        rlang_0.4.11     
[13] later_1.1.0.1     pillar_1.6.0      glue_1.4.1        withr_2.4.2      
[17] DBI_1.1.1         tweenr_1.0.1      lifecycle_1.0.0   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      rvest_1.0.0      
[25] htmlwidgets_1.5.1 evaluate_0.14     labeling_0.3      knitr_1.33       
[29] httpuv_1.5.4      fansi_0.4.1       highr_0.8         Rcpp_1.0.5       
[33] readr_1.4.0       promises_1.1.1    backports_1.1.8   webshot_0.5.2    
[37] farver_2.0.3      fs_1.5.0          hms_1.0.0         digest_0.6.25    
[41] stringi_1.4.6     grid_4.0.2        rprojroot_1.3-2   tools_4.0.2      
[45] magrittr_2.0.1    tibble_3.1.1      crayon_1.4.1      whisker_0.4      
[49] pkgconfig_2.0.3   ellipsis_0.3.1    xml2_1.3.2        prettyunits_1.1.1
[53] httr_1.4.2        rstudioapi_0.13   assertthat_0.2.1  rmarkdown_2.10   
[57] R6_2.4.1          git2r_0.28.0      compiler_4.0.2